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A STRATEGY FOR THE ANALYSIS OF THE
STABILITY OF REFERENCE POINTS IN
DEFORMATION SURVEYS

AT Y-Q. Chen®, Adam Chizanowski, and J.M. Secord
Depariment of Surveying Engineering, University of New Brunswick
Fredencton, New Brunswick

Confirmation of the stability of reference points is one of the main problems in deformation analy-
sis. The difficulty lies in the datum defects of monitoring networks. A strategy has been developed by the
authors and successfully applied in a number of projects. The method leading 10 the mininuzation of the
first norm of the vector of displacements of reference points has been designed for identifying unstable
refercnce points. Having flagged the unstable reference points, estimation and statistical testing of their
displacements are performed.

Two examples are given. A vertical reference network is analyzed step by step to ilfustrate the pro-

posed strategy. Resulis of analyzing a horizonial reference network for maonitoring a gravity dam are
given in the second example.

La confirmation de la stabilité des points de référence consiitue I'un des principaux problémes dans
' analyse des déformations. La difficulté réside dans Vimperfection des données des réseaux de surveillance.
Les auteurs ont mis au point une stratégie qul'ils ont appliquée avec succés & un certain nombre de projets.
La méthode menant @ la minimisation de la premiére norme du vecteur des déplacements des poinis de
référence a été congue pour identifier les points de référence instables. Aprés evoir ainsi identifié ces
derniers, une estimation et une analyse statistique de leurs déplacements sont alors effectuées.

Deux exemples-sont donnés. Un réseau de référence verticale est analysé de fagon systématique pour

** ustrer la stratégie proposée. Les résultats de I analyse du réseau de référence horizontale @ des fins de
surveillance d’ un barrage figurent dans le second exemple.

Introduction

Most surveying schemcs for moniforing some of them may move due to, foc instance, local

dcformations are comprised of several reference
points against which the displacements of the
object points are calculated. To obtain the absolute
disptacements of the object points, the stability of
the reference points must be ensured and any
unstable points idenuficd. Otherwise, the calculat-
ed displacements of the object points and the sub-
scqueat analysis and nterpretation of the defor-
mation of the object may be significantly disrort-
ed. Figure I illustrates a sitwation where points A,
B, C. and D are reference points and the others,
object points. If point B has moved but 5 not
identified and is used with poiat A as explicit min-
imal consuaints in the adjustment (or two cam-
paigns of obscrvations, then all the object points
and rcfecence points C and D wilt show signifi-
canl movcmenls (cven when, in reality, they are
stable). The reference points are supposed 10 be
* -ated outsede the deformation arca. However,

forces and inappropriate monumentation. Even if
the reference poiats are monumented on solid
bedrock, the forces which cause the deformation of
the object may aiso affect the swroundings over a
large arca. Thercfore, the stability of reference
points should always be carefully checked. Unfor-
tunately, this problem is very oftea underestimated
and neglected in surveying practice.

Over the past two decades several methods for
the analysis of reference networks have been
developed in various rescarch centers [Pelzer
1974; van Mierlp 1978; Niemeier 1981; Koch and
Fritsch 1981; Chrzanowski et al. 1983; Heck 1983;
Janusz 1983; Griindig et al. 1985]. A conceplual
revicw has beea given by Chrzanowski and Chen
{1986].

Onc mcthod, developed by the authors, 15 a
spectal case of the UNB gencratized method for
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Figure I: The influcnce of an unstable reference
polint (rot te scale)

the analysis of deformation surveys. This method
has been implemented in the computer package
DEFNAN [Chrzanowski et al. 1983; Chen 1983;
Secord 1985; Chrzanowski et al. 1986]. Since
1983, the method has been successfully applied to
a number of monitoring networks. This paper dis-

cusses the basic principles of the method and the
analysis strategy.

Adjustment of the Observations
in a Free Monitoring Network

Since no reference point in a geodetic moni-
toring network can be accepted as stable until the
analysis 1s performed, the network must be treated
as a free network. [t means that the network in
itself does not contain enough information to be
located in space. Examples are a leveling network
without elevation infounation of any poini, or a
horizontal trilateration network without the known
coordinates of any point and any known azimuth
between a pair of points. Therefore, free networks
can be freely translated or rotated or scaled in
space, and can be coasidered as suffering from
datum defects.

Consider the lincartzed paramctric adjustment
model of a frec nctwork as

f+v=Ax | with ¢2,0 (L

where [ 1s the n-vector of observations, v is the n-
vector ol residuals, x 18 the vector of Lhe correc-
Lions to the approximate coordinates of the survey
points, A is the configuration matrx, 62, is the a
priort vanance facwr, and @ is the cofactor matnix
of the observations. The least squares criterion

- lcads o the normal cquations:
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where M= ATQ-1A, w=ATQ U Duc 10 datum
deleets in the network, the cocfficient matrix, N,
of the normal cquations is singular, ic., det{N} =
0. Therefore, one must deline a datnm to solve for
x, cxpressed by a system of constraints or datum
cquanons as

DT r=0 3)

in which there is an equation for cach datum
defect of the network. For example, a leveling net-
work of m poiats with poiat 7; held fixed, has the

dawm equation 8ff; = 0 where 8#H; is the correc-
tion to the approximate height of point £y, and

matrix 07 is of the order 1 by mt and has 1 for the

i clement and O cisewhere: a trilateration ner-
work of m poiats with, say, point P} and the

azimuth from point P 1o point P held fixed, then
the datum equations are dx;= §y,;= 0 and

sin(oy3)8y3 - cos(oy3)dxy = 0, where 8x; and By;
are the corrections to the approximate coordinaies
of point #;, and matrix DT (3 by 2m) is written as

1000 0O G .00
T
D=lo100 o ¢ ..00
0000 cos{ous) sin(onz}y ...00

The solution of equation (2) with datum equations
DT x = 0 reads as [Chen 1983}

X=MN+DDY'w @)
with a cofactor matrix

Q% = N+DDY - HH DD THY 'HT (5)
n which the matrix £ fulfills the conditions that
rank (M} = cank{D] and N =0. For a vertical net-

work i = 1, a vcolor with all clements cqual to 1.
For a pure iiangulation network of m points,

1 0 1 0 1 0
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where ‘:U» yr” arc the coordimae components ol
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point £, with respect 10 the conroik of the net-
work, 1c,

x%=z - (E‘lx,-) fm,y° =y - (g_,y,-) /e
1

with x;, y; the coordinate components of point fiin

the original coordinate system. The rows in HT
correspond (e the ranslations in the x and y dirce-
tions, rolation, and scale change of the nciwork,
respectively. For a trilateration or triangulatcration
nciwork, the last row of H' in equation 6 1s not
involved.

In practice, one could introduce some pseudo-
observations with very small variances 1o remove
the datum defects. For example, in 1 trilatccation
network, the observations of an azimuth and the
coordinates of onc point are introduced. The
results will be pratically the same as that obtained
from equations (4) and (5). However, one should
be cautioned that ill conditioning of the normal
cquations may occur due to very small variances
for the pseudo-observations.

The solution of equation (2) with respect to
the datum equations DTx = 0 can also be realized
through a similarity transformation from any solu-
tion T, as

X= 8%, Qi=5SQuS" )
with
S=1-HDTHYy'\pT = 1 - HHTWHY\HTW | (8)

where W = D(DTDY1DT. Matrix W in equation (8)
can be interpreted as a “weight™ matrix in the defi-
nition of the datum and therefore cquation (N is
called a weighted similarity wansformation. If all
of the points in the network are of the same impor-
tance in defining the datwm, thea W = I and the
results become the “iner constraint™ solution, If
only some points arc used to define the datum,
these points are given unit weight and the others
zero weight, Le., W = diag {1, ). For more details
on the adjustment of free networks, refcrence can
be made o Chen [1983].

o ~2 .

The a posteriori vartance facior Go and its
degrees of f(reedom, df, are computed from the
estumaicd residuals ¥ as:

2 T ga
ga—_ig_"'df:n-r(mk{ﬂ] “
of

where the rank of A for a complete actwork (with-
out conliguration doefects) is equal w the number
ol unknown parameters x minus the aumber of
dinturn defects of the newwork

Identification of Unstable
Reference Points by Mini-
muzing the First Norm of the
Displacement Vector of Ref-
erence Points

When companing two campaigns, the vector

of displacements [or all the surveyed points and
its cofactor matrix are calculated as:

d=%;-%, Qu=Qi1 + Qn

: ~2 ]
The pooled vanance factor Copy and us degrecs
of freedom dj"'p arc computable from

(10)

Gtp = {dfi(Gon) + df(G)) /ey, df, = dlfs + gpa (1)

where the subscripts 1 and 2 refer to the first and
second campaigns, if the a priori variance factor
is not available and the statistical st on the null

hypothesis HO:'c}glﬁéz_wiLh signilicance level @,
(F(o/2; dfa. df)Y" <Gon 1 G <F(0f2; dfidfo) (12)

1s true. Failure of the above 125t may be caused
by incompatible weighting of the observations
between the two adjustments or by incorrect
weighting scheme.

As already mentioned, the displacements
calculated from equation (10) may be biased by
a pre-selected datum or by different datum defi-
nitions in the adjustment of two campaigns,
which makes identification of unstable reference
points difficult. To overcome this problem a
strategy of minimizing the first norm of the dis-
placement vector of the reference poinis has
been developed by the authors [Chen 1983]. The
strategy provides a datum which is robust 1o
unstable refecence points and gives less distored
displacements. For more on robust estimation,
the readers are referred 10 Huber [1981}, and
Caspary [1988].

Let d, and Q4, be the displacement vector
and 115 cofactor matrix for the reference points,
respectively, extracted from o and @y in cqua-
tion (10). Teansformation of them oo anothes

datum is performed using equations (7) and (8)
as

de = [1- WA Wity i) w,pd, = 5.0, (132)

and

Qd, - §.Q4.57 (13b)

Mauia If, 15 canstructed in the sunie manner as
10 the previous sectios and depends on (he union

in practice,
one could
introduce
some
pseudo-
observations
with very
small
variances to
remove the
datum
defects.

173



C 1 5 M

For a two-
dimensional
network, a
method of
iterative
weighted
similarity
transforma-
tion has
been elabo-
rated . . .

of the datun delects 1 the vwo campaigns and on
the number of refercnce points. For example, il the
monitoring network in the ficst campaign is trian-
gulation which has dawm defects of two wansla-
uons, one rotation and one scale and in the second
campaign, a trilaicration which has dawm defects
of two translations and onc rotation, then the union
of the datum defects is the same as in the first
campaign.

The strategy presented here is 10 selcct such a
weight matrix ¥, i cquation (13a) that the first
norm of the displacement vecior d,. approaches a

minimum, 1.6 IIEI_M1 =min. Let
t=(HIWH Y HTW 4,

called the transformation parameters, then |l Erlll =
21 d(i)-k;t |, wheee d,{i) is the i clement of d,,

and &; the i row vector of marrix H,. The condi-
tion can be writien as

min { ¥l d,(i)-h;t 1) (14
t i

Equation (14} may not always have 2 unique solu-
tion. This is, however, not a problem for the pur-
poses of identification of unstable reference points.
For a verttcal monitoring network, the datum
parameter is a translation quantity ¢, in the vertical
ditection. If w; is the displacement of point P;,
then expression (14 ) becomes
(1)

n};n.{ ‘li.lw,-—:zi }

The solution for ¢, is straightforward. All the w; are
arranged in a sequence of their increasing algebra-
ic values, and the middle value is the value r,. If
there is an even number of reference points, either
value of the 1wo middle displacements or their
average can be used as ¢,. In other words, the point
or a pair of points whase displacement(s) is in the
middle place has weight | and the rest, weight 0.
The new vector of displacemeats and its cofactor
matrix arc calculzed (rom equation (13).

For a wwo-dimensional network, a method of
iterative weighted sunilarity transformation has
been elaborated (Chen 1983; Secord 1985]. In this
method, the weight matrix W, in equation (13} is

takcn as identity au the outsel, then in the (k+l)‘h
transformation the weight matrix is deflined as

(8}
WED = g 117l D )

(16)
i L i . i —-
where d () is the ! component of the vector d,
after the &U ieragion, The werative procedure con-

tunues until the absolute differences belween he
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successive transformed displacement COmponcnts
are smaller than a wlerance § (say, half of the

average accuracy of the displaccment components).
(1)

During this procedure some - () may approach

zero causing numcrical instabilities because

~{)
ld | pecomes very large. There are two ways
to handle this. One is w replace the expression (16)

~@)
by W &+1) = diag (11d "D 1481, and tre other

) l)
is to set a lower bound. When ld,( (0' is smaller
than the iower bound, its weight is sel to zero. If in
o
the following iterations the % () becomes
significantly large again, the weights can be
changed accordingly. The explanation for the second
way 15 given in Schlossmacher (1973]. The above
procedure provides an approximate solution to
cquation (14). In the final iieration, say (k+1)h,
the cofactor matrix is calculated {rom:

Qd, = sVqd, (s 17
By comparing the displacement of each point
apainst its confidence region at a specified signifi-

cance level o, one can identify the reference
points which are most probably unstable.

Estimation and Statistical
Testing of the Displacements
of Unstable Reference Points
and Object Points

The final displacements of the points identi-
fied as unstable and of all the object points are
estimated by a least squares fitting of a deforma-
tion model Be to the displacements 4 obuained
from equation (10} as

d+v=8c {18)
where v is the vector of residuals after fitting, ¢ is
the vector of the final displacements o be estimat-
ed and 8 is the design matrix. Explicily, the
deformation madel for each unstable point and
object paint P; i a lwo dunensional network is
wrilien as:

ditvi=| ¥|=c (19a)
and for cach stable point Pj as:
d 0
i (190)
0
Thus, the matrix B cquation (18} has ant ele-

ments corresponding (0 the uniable podnrs and
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objcc‘l points, gnd reros elscwhere. Solution of AR = ?Tl“d? (24)
cquation {18) gives
’ which follows a chi-squared distribution with
degrees of freedom as
T ‘1T
=(B'PB) B Pd (202) df,. = rank(Py) - m, (25)
and its cofactor matrix where i, is the dimension of unknown vector ¢
and the rank defect of P is equal to the number
~ T q in the union of datum defects in both campaigns.
Qc =(B'PJB) (20b) If the incquality

The weight matrix £y can be calculated (Chen,
[983] cither as

Pa=N (N +N) N, 2n
or
Py=(SQ S =[SQ S+ H{HTHy VHTY - H(HTHy \HT
{22)

In equation (21) Ny (i=1,2) is the coefficient
matrix of the normal equations (see equation (3)).
A generalized inverse, (N,+5)", can be comput-
ed as {(N{+No+HHT)-1 where the column vectors
of H correspond (0 the commom datum defects in
the two campaigns. If two campaigns have the
same survey scheme and measurement accuracy,
ie., Nj=Ny =N, then
T Pg=Np. @)
In equation (22} matrix S is as expressed in equa-
tion (8) with W = [ and the column vectors of H
correspond to the union of datum defects in the
two campaigns. The reason for computing the
weight matrix in such a way is so that the estimat-
ed parameters ¢ will be independent of the datum
used in the adjustments. If the datum defects are
removed by the intreduction of some pseudo-
observations with small vanances, then the weight
matrix could be calculated from
Py=04" 221
However, in this case, not only will numerical
problems likely occur due to ill-conditioning of
4 but also will complications arise in modelling
of deformations. Some additonal parameters have
1o be introduced, as s explained in the second
example below. More details are given in
[(Chrianowsk: et af. 1983).
The significance of the estimated displace-
ment €; for an unstable point P; is indicated by

AT s
Qe ¢

[ et (G0)p) > F 0t mi, dfy) (23)
where m; 1s the dimcnsi()n of ¢, Q‘ is the sub-
matrix of Q¢ and °°p and dfp are the p(miul van-
sce factor and s degrees of freedom, respeciive-
¥, To wst the oulf hypothesis that no other unsta-
ble point exists, a quadratic function AK of the
cstimalted reseduals 3 a5 calculated as

AR [ (df. Gay) < F(e : dfs, dfy) 26)

holds, the null hypothesis is acceptable at the (1-
@)% confidence kevel. Othecwise a search for
other unstable reference points should be made.
The latter case seldom occurs. When the a pri-

. . . ~2 -
ori variance factor 6,2 is known, o, and df;, 1

the tests (23) and (26) are replaced by o2 and

oo, respectively.
The analysis procedures discussed above
are summarized in Figure 2.
1

e displ and Adjusument of obs.
]. cofactot mauix fox two cpochs

Dhspl & cofactor mavix

yes J‘laggmg unstable

Lride conli.rogiol | crenoe pXs.

Formulation of
deformation model

'

Estimaton of
deforrmaton model

Computc weight
mamx of displ. v

Yem waght Tor
unsutble pus

The Aawchart of #nalysis procedures

Fipuee 2:
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Examp!es Since the a priort variance (actor 15 not available,
the a postertori variance facwors for both cam-

. . paigns are estimated {from the residuals as
Analysis of a Vertical Reference

5 ~
Network o = (5.Po 1 dh = 0.269 13 = 00897
1
Figure 3 is a leveling reference network with | 2nd
two survey campaigns. The observations are listed P
in Table 1. G = (S PR dfa = 0.109 3= 0.0363
i

~2 ~2
A The null hypothesis H,: S0, =60, is wsted using
expression (12):
VE(0.025;3,3)<Bn/Gu=12.47<F(0.025:3 3)=15.4
Therclore, the pooled vanance factor 15 calculated

from equavon {11) as

G = 0.0630
with degrees of freedom df = 6.

The vector of displacements fmm] and its
cofactor matrix read

d=3;- X = (000154 206 1.74)"

and
Figure 3: A leveling network 0 Q 0 o
Table 1: The observations of the leveling networic Qd= 0 0.74 040 045
0 040 060 040
observed height difference  [mm]) 0 045 0.40 0.74
feveling line campaign 1 campaign 2 weight p; i ) ’
Step 2. ldentification of unstable points
1 459 46.9 Using the method discussed above, the dis-
: - i placements are arranged in the sequence of their
2 2658 265.6 2 increasing algebraic values as (0.00 1.74 1.94
3 310.3 312.2 1 2.06). Thus points D and B are assigned unit
4 262 241 2 weight and poims_ A and C ze00 “fcighl {transta-
s 708 ‘_} N tion pamameter £, in equation {15) is the mean of
- 70. the two middle displacements, ie., 1, = 1.84).
6 336.5 336.1 2

After the weighted similarity transformation, the
new vector of displacements {mm] and its cofactor
matrix as

Step 1. Adjustment of the leveling network and _r
computation of the displacements d ={-1.840.100.22 -0.10)

Peint A 1s fixed with an clevation of 0.50000 and

m in the adjustment of the observations for cach -
- - [‘

campaign. The adjusted heights fm] of poiats A, : 060 0.00 020 0.00

B, C, and D for both campaigns arc QE P 0.00 0.13 0.00 -0.15

L 020 0.00 0.4¢ 0.00

0.0 0015 0.00 015

3 = (0.50000 0.54479 0.47392 0.81046)

an¢d

The displacceent of cach pomt 15 lested at g sig-
}\1? = (050000 0.54673 047598 (.81220) nificance level ol =003, ic.,
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-2
"Gé»quk(- 1.84)7((0.60)(0.0630)| =59 6> F(0.05:1 6)=6.0
Al (G mr=dol (Goas)=10 6<F(0.05:16)=6.0

~2 .2
dcf(Gaqm)=1.92<F(0.05:1.6)=6.0

It is clear that only point A can be swrongly sus-
pecied as being unstable.

Step 3. Estimation of the displacement of the
unstable point.

Using cquation (18) with d/ = (000 1.91
206 1.74), BT =(1 00 O) and

2 05 1 05
05 25 -1 -
-1 - 3 -1

05 - -I25
the estimated displacement of point A is

Pa= N](er-N'))-Ng: N/Z2 =

€=-1.95 mm
and us cofactor

=(BPB)' =05
The displacement is significant due to the fact that

1 (G qd) = 126.1 > F(0.05: 1,6) = 6.0
The test on the deformation model is performed

using the quadratic function (24) with the residu-
als equal to

¥ (-1.95 -1.94 206 -1.74)
and

AR = ¥ P& =0.189
The test

AR [(23g) = 1.5 < F(0.05;2.6) = 5.1
indicates that the deformaton model is accepable,
i.e., the remaining points can be considered as sta-
ble at 95% confidence level.

Once can also use the vector of displacements o
after the weighted similarlity transformation to
estimatc ¢ and calculate the test siatistic AR. The
results will be identical. This indicates that what-
ever minimal constraint solution is used in the

cstimation and test processes, it will not affect the
final results.

Analysis of the Reference Network
for Monitoring a Gravity Dam

A pure triangulanon network of 6 referencs
points and 10 uniqucly intersccied points on a

S0 m
[
Figure 4: The titonitoring network of a gravity dam

dam crest (Figure 4) was observed in two survey
campaigns with 47 directions in the first cam-
paign and 53 directions in the second. Lcast
squares estimations of the coordinates Il N

were made under explicit minimal constramts
involving points E and F (considered “fixed”
and emrorless). No observation in either cam-
paign was detected as being an outlier at 0=0.05

using T-max test [Pope 1976; Vanifek and
Krakiwsky 1982]. The pooled variance factor,
agy= 0.95, had df, = 31 degrees of freedom.
The vector of displacecments o and the cofactor
matrix {; were obtained using equation (10).
Within the d and (4 there are zero clements cor-
responding to points E and F.

The vector of displacements d, and its
cofactor matrix @4, for the reference points A,
B, C, D, E, and F were extracted from o and Qu

The nerative weighted tansformation resulted in
the displacement pattern, coupled with the 95%
confidence ellipses, for the reference points as
shown in Figure 5. Obviously, reference point I
has moved significandy whilc the others remain
stable.

Having a; and b as unknown parameters
coreesponding 1o the x- and y-components of the
displacement for cach object point and also for
point D, the deformation model consisted of 2?2
parameters (i.c., 11 pairs of displacement com-
panents). The weight matrix £ was calculaed
using equation {22) and the 22 unknown param-
cters were estunated using cquation (20). A plos
of these estimated displacements and therr asso
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Figure 5: Displacements after the iterative weighted transformation

ciated 95% confidence ellipses is given in Figure
6. With 6 degrees of frecdom in the modeling, the
test on the adequacy of the model was not rejected
at 0=0.05 since:

AR [(df:Gy) = 1.76 < F(0.05; 6, 31) = 2.41

where AR is the quadratic form of the residuals 7
after fitting, calculated from equation (24). Thus,
the deformation model, in which the reference
points A, B, C, E, and F are accepted as stable, is
appropriate. .

One could perform the above analysis using a
subvector d; of 4 and submatrix Q.5 of Q4 which
do not include zero elements comresponding 1o the
“fixed” points E and F. In this case, the weight
mairix of d; would be calculated directly as Py =

Q117! rather than using equation (22). Since points
E and F have been identified as stable, the defor-
mation model would be formulated in the same
way as the above, i.c., using equations (19a) and
(19b} except that points E and F would not be
involved in modeling, The same estimation and

S omm

testing procedures would be used. However, if
cither or both of points E and F would have been
identificd as unstable, additional parameters
which are a function of the displacements of
points E and F would have o be included in
deformation modeling. If both points would have
been identified as unstable reference points, the
calculated displacements of other points would
have been distorted by translation, rotation and
scale change. To account for these effects equa-
tons (192} and (19b) would have to be changed 1o

[ ai + k{xi-xr} + ka(yi-yF) + ar ]
d;+v; =

bi - ky{xe-xe) + ki(yi-ye) + br
and

[ kv(xp-2E) + kayye) + ar |
d; + v;= J

ka(xj-xr) + ki(y;-yr) + br

respectively, where ky and ky are the unknown

scale change and rotation parameters. The final

displacement components of point E can be then
calculated from

a\x (xe-n)+gz(xs-xr)+3r. b£=i’.\ 1(ye-yF)-k2(xe-xp)+br

If only one of them, say point E, would have been
identified as unstable, ar and bp would disappear
in the above formulation. To avoid these problems

the methodology suggested in this paper should be
followed.
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